Nuprl Lemma : squash_functionality_wrt_uiff
∀[P,Q:ℙ].  ({P ⇐⇒ Q} ⇒ {uiff(↓P;↓Q)})
Proof
Definitions occuring in Statement : 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
guard: {T}, 
iff: P ⇐⇒ Q, 
squash: ↓T, 
implies: P ⇒ Q
Definitions unfolded in proof : 
guard: {T}, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
squash: ↓T, 
prop: ℙ, 
rev_implies: P ⇐ Q
Lemmas referenced : 
iff_wf, 
squash_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairFormation, 
imageElimination, 
independent_functionElimination, 
hypothesis, 
imageMemberEquality, 
hypothesisEquality, 
baseClosed, 
lemma_by_obid, 
isectElimination, 
lambdaEquality, 
dependent_functionElimination, 
independent_pairEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
because_Cache
Latex:
\mforall{}[P,Q:\mBbbP{}].    (\{P  \mLeftarrow{}{}\mRightarrow{}  Q\}  {}\mRightarrow{}  \{uiff(\mdownarrow{}P;\mdownarrow{}Q)\})
Date html generated:
2016_05_13-PM-03_14_26
Last ObjectModification:
2016_01_06-PM-05_49_35
Theory : core_2
Home
Index