Nuprl Lemma : squash_not

[p:ℙ]. uiff(↓¬p;¬p)


Proof




Definitions occuring in Statement :  uiff: uiff(P;Q) uall: [x:A]. B[x] prop: not: ¬A squash: T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a not: ¬A implies:  Q false: False squash: T prop:
Lemmas referenced :  not_wf squash_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lambdaFormation thin sqequalHypSubstitution imageElimination independent_functionElimination hypothesis voidElimination hypothesisEquality sqequalRule lambdaEquality dependent_functionElimination because_Cache lemma_by_obid isectElimination imageMemberEquality baseClosed productElimination independent_pairEquality isect_memberEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[p:\mBbbP{}].  uiff(\mdownarrow{}\mneg{}p;\mneg{}p)



Date html generated: 2016_05_13-PM-03_13_58
Last ObjectModification: 2016_01_06-PM-05_49_52

Theory : core_2


Home Index