Nuprl Lemma : squash_not
∀[p:ℙ]. uiff(↓¬p;¬p)
Proof
Definitions occuring in Statement : 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
not: ¬A
, 
squash: ↓T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
squash: ↓T
, 
prop: ℙ
Lemmas referenced : 
not_wf, 
squash_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
thin, 
sqequalHypSubstitution, 
imageElimination, 
independent_functionElimination, 
hypothesis, 
voidElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
because_Cache, 
lemma_by_obid, 
isectElimination, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[p:\mBbbP{}].  uiff(\mdownarrow{}\mneg{}p;\mneg{}p)
Date html generated:
2016_05_13-PM-03_13_58
Last ObjectModification:
2016_01_06-PM-05_49_52
Theory : core_2
Home
Index