Nuprl Lemma : dsdeq_wf

[A:Type]. ∀[d:DS(A)]. ∀[a:A].  (dsdeq(d;a) ∈ EqDecider(dstype(A; d; a)))


Proof




Definitions occuring in Statement :  dsdeq: dsdeq(d;a) dstype: dstype(TypeNames; d; a) discrete_struct: DS(A) deq: EqDecider(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  dsdeq: dsdeq(d;a) dstype: dstype(TypeNames; d; a) discrete_struct: DS(A) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  pi2_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut applyEquality thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination functionEquality cumulativity hypothesisEquality universeEquality lambdaEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache productEquality

Latex:
\mforall{}[A:Type].  \mforall{}[d:DS(A)].  \mforall{}[a:A].    (dsdeq(d;a)  \mmember{}  EqDecider(dstype(A;  d;  a)))



Date html generated: 2016_05_14-PM-03_24_18
Last ObjectModification: 2015_12_26-PM-06_21_39

Theory : decidable!equality


Home Index