Nuprl Lemma : dseq_wf

[TypeNames:Type]. ∀[d:DS(TypeNames)]. ∀[a:TypeNames].
  (dseq(d;a) ∈ dstype(TypeNames; d; a) ⟶ dstype(TypeNames; d; a) ⟶ 𝔹)


Proof




Definitions occuring in Statement :  dseq: dseq(d;a) dstype: dstype(TypeNames; d; a) discrete_struct: DS(A) bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T discrete_struct: DS(A) dseq: dseq(d;a) dstype: dstype(TypeNames; d; a) pi1: fst(t) pi2: snd(t) subtype_rel: A ⊆B deq: EqDecider(T)
Lemmas referenced :  deq_wf discrete_struct_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin sqequalRule applyEquality hypothesisEquality lambdaEquality setElimination rename lemma_by_obid isectElimination hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[TypeNames:Type].  \mforall{}[d:DS(TypeNames)].  \mforall{}[a:TypeNames].
    (dseq(d;a)  \mmember{}  dstype(TypeNames;  d;  a)  {}\mrightarrow{}  dstype(TypeNames;  d;  a)  {}\mrightarrow{}  \mBbbB{})



Date html generated: 2016_05_14-PM-03_24_21
Last ObjectModification: 2015_12_26-PM-06_21_42

Theory : decidable!equality


Home Index