Nuprl Lemma : name_eq_wf
∀[x,y:Name].  (name_eq(x;y) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
name_eq: name_eq(x;y)
, 
name: Name
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
name_eq: name_eq(x;y)
, 
subtype_rel: A ⊆r B
, 
deq: EqDecider(T)
Lemmas referenced : 
name-deq_wf, 
deq_wf, 
name_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
applyEquality, 
lemma_by_obid, 
hypothesis, 
thin, 
lambdaEquality, 
sqequalHypSubstitution, 
setElimination, 
rename, 
hypothesisEquality, 
isectElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[x,y:Name].    (name\_eq(x;y)  \mmember{}  \mBbbB{})
Date html generated:
2016_05_14-PM-03_34_12
Last ObjectModification:
2015_12_26-PM-06_00_35
Theory : decidable!equality
Home
Index