Nuprl Lemma : name_eq_wf

[x,y:Name].  (name_eq(x;y) ∈ 𝔹)


Proof




Definitions occuring in Statement :  name_eq: name_eq(x;y) name: Name bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T name_eq: name_eq(x;y) subtype_rel: A ⊆B deq: EqDecider(T)
Lemmas referenced :  name-deq_wf deq_wf name_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule applyEquality lemma_by_obid hypothesis thin lambdaEquality sqequalHypSubstitution setElimination rename hypothesisEquality isectElimination axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[x,y:Name].    (name\_eq(x;y)  \mmember{}  \mBbbB{})



Date html generated: 2016_05_14-PM-03_34_12
Last ObjectModification: 2015_12_26-PM-06_00_35

Theory : decidable!equality


Home Index