Nuprl Lemma : remove-repeats-append

[T:Type]. ∀[eq:EqDecider(T)]. ∀[L1,L2:T List].  (||remove-repeats(eq;L1 L2)|| ||remove-repeats(eq;L2 L1)|| ∈ ℤ)


Proof




Definitions occuring in Statement :  remove-repeats: remove-repeats(eq;L) length: ||as|| append: as bs list: List deq: EqDecider(T) uall: [x:A]. B[x] int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x]
Lemmas referenced :  remove-repeats-set-equal append_wf set-equal-permute
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_isectElimination dependent_functionElimination because_Cache sqequalRule isect_memberEquality axiomEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[L1,L2:T  List].
    (||remove-repeats(eq;L1  @  L2)||  =  ||remove-repeats(eq;L2  @  L1)||)



Date html generated: 2016_05_14-PM-03_26_15
Last ObjectModification: 2015_12_26-PM-06_23_02

Theory : decidable!equality


Home Index