Nuprl Lemma : retract_wf

[T:Type]. ∀[f:Base].  retract(T;f) ∈ ℙ supposing T ⊆Base


Proof




Definitions occuring in Statement :  retract: retract(T;f) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] prop: member: t ∈ T base: Base universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a retract: retract(T;f) subtype_rel: A ⊆B implies:  Q prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  all_wf and_wf has-value_wf_base equal-wf-base base_wf subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry lemma_by_obid isectElimination thin hypothesisEquality isect_memberEquality because_Cache universeEquality baseApply closedConclusion baseClosed applyEquality functionEquality lambdaEquality

Latex:
\mforall{}[T:Type].  \mforall{}[f:Base].    retract(T;f)  \mmember{}  \mBbbP{}  supposing  T  \msubseteq{}r  Base



Date html generated: 2016_05_14-PM-03_31_34
Last ObjectModification: 2016_01_14-PM-11_19_23

Theory : decidable!equality


Home Index