Nuprl Lemma : retract_wf
∀[T:Type]. ∀[f:Base].  retract(T;f) ∈ ℙ supposing T ⊆r Base
Proof
Definitions occuring in Statement : 
retract: retract(T;f)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
base: Base
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
retract: retract(T;f)
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
all_wf, 
and_wf, 
has-value_wf_base, 
equal-wf-base, 
base_wf, 
subtype_rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lemma_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
isect_memberEquality, 
because_Cache, 
universeEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
functionEquality, 
lambdaEquality
Latex:
\mforall{}[T:Type].  \mforall{}[f:Base].    retract(T;f)  \mmember{}  \mBbbP{}  supposing  T  \msubseteq{}r  Base
Date html generated:
2016_05_14-PM-03_31_34
Last ObjectModification:
2016_01_14-PM-11_19_23
Theory : decidable!equality
Home
Index