Nuprl Lemma : sq-decider_wf
∀[eq:Base]. (sq-decider(eq) ∈ ℙ)
Proof
Definitions occuring in Statement : 
sq-decider: sq-decider(eq)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
base: Base
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
sq-decider: sq-decider(eq)
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s]
Lemmas referenced : 
uall_wf, 
base_wf, 
exists_wf, 
base_sq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
functionEquality, 
sqequalIntensionalEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[eq:Base].  (sq-decider(eq)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_14-AM-06_06_47
Last ObjectModification:
2015_12_26-AM-11_46_37
Theory : equality!deciders
Home
Index