Nuprl Lemma : sq-decider_wf

[eq:Base]. (sq-decider(eq) ∈ ℙ)


Proof




Definitions occuring in Statement :  sq-decider: sq-decider(eq) uall: [x:A]. B[x] prop: member: t ∈ T base: Base
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T sq-decider: sq-decider(eq) so_lambda: λ2x.t[x] implies:  Q prop: so_apply: x[s]
Lemmas referenced :  uall_wf base_wf exists_wf base_sq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality functionEquality sqequalIntensionalEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[eq:Base].  (sq-decider(eq)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_14-AM-06_06_47
Last ObjectModification: 2015_12_26-AM-11_46_37

Theory : equality!deciders


Home Index