Nuprl Lemma : equipollent-sets

[T:Type]. ∀[P,Q:T ⟶ ℙ].  {x:T| P[x]}  {x:T| Q[x]}  supposing ∀x:T. (P[x] ⇐⇒ Q[x])


Proof




Definitions occuring in Statement :  equipollent: B uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T so_apply: x[s] subtype_rel: A ⊆B prop: so_lambda: λ2x.t[x] ext-eq: A ≡ B and: P ∧ Q guard: {T} all: x:A. B[x] iff: ⇐⇒ Q implies:  Q rev_implies:  Q
Lemmas referenced :  equipollent_weakening_ext-eq all_wf iff_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setEquality cumulativity hypothesisEquality applyEquality functionExtensionality hypothesis lambdaEquality sqequalRule universeEquality because_Cache independent_isectElimination functionEquality independent_pairFormation setElimination rename dependent_set_memberEquality dependent_functionElimination productElimination independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[P,Q:T  {}\mrightarrow{}  \mBbbP{}].    \{x:T|  P[x]\}    \msim{}  \{x:T|  Q[x]\}    supposing  \mforall{}x:T.  (P[x]  \mLeftarrow{}{}\mRightarrow{}  Q[x])



Date html generated: 2016_10_21-AM-10_58_12
Last ObjectModification: 2016_08_07-PM-11_36_41

Theory : equipollence!!cardinality!


Home Index