Nuprl Lemma : equipollent_functionality_wrt_equipollent3

[A,B1,B2:Type].  (B2 B1  (B1 ⇐⇒ B2 A))


Proof




Definitions occuring in Statement :  equipollent: B uall: [x:A]. B[x] iff: ⇐⇒ Q implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T guard: {T} rev_implies:  Q
Lemmas referenced :  equipollent_transitivity equipollent_wf equipollent_inversion
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation cut hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_functionElimination universeEquality

Latex:
\mforall{}[A,B1,B2:Type].    (B2  \msim{}  B1  {}\mRightarrow{}  (B1  \msim{}  A  \mLeftarrow{}{}\mRightarrow{}  B2  \msim{}  A))



Date html generated: 2016_05_14-PM-04_00_21
Last ObjectModification: 2015_12_26-PM-07_44_11

Theory : equipollence!!cardinality!


Home Index