Nuprl Lemma : AC_1_0_wf

AC_1_0{i:l}() ∈ ℙ'


Proof




Definitions occuring in Statement :  AC_1_0: AC_1_0{i:l}() prop: member: t ∈ T
Definitions unfolded in proof :  AC_1_0: AC_1_0{i:l}() member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B prop: so_lambda: λ2x.t[x] implies:  Q so_apply: x[s]
Lemmas referenced :  all_wf nat_wf squash_wf exists_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut instantiate lemma_by_obid sqequalHypSubstitution isectElimination thin functionEquality hypothesis applyEquality lambdaEquality cumulativity hypothesisEquality universeEquality because_Cache

Latex:
AC\_1\_0\{i:l\}()  \mmember{}  \mBbbP{}'



Date html generated: 2016_05_14-PM-04_15_38
Last ObjectModification: 2015_12_26-PM-07_53_52

Theory : fan-theorem


Home Index