Nuprl Lemma : AC_1_0_wf
AC_1_0{i:l}() ∈ ℙ'
Proof
Definitions occuring in Statement : 
AC_1_0: AC_1_0{i:l}()
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
AC_1_0: AC_1_0{i:l}()
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
Lemmas referenced : 
all_wf, 
nat_wf, 
squash_wf, 
exists_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
cumulativity, 
hypothesisEquality, 
universeEquality, 
because_Cache
Latex:
AC\_1\_0\{i:l\}()  \mmember{}  \mBbbP{}'
Date html generated:
2016_05_14-PM-04_15_38
Last ObjectModification:
2015_12_26-PM-07_53_52
Theory : fan-theorem
Home
Index