Nuprl Lemma : decidable__upwd-closure
∀[T:Type]. ∀[A:(T List) ⟶ ℙ].  (Decidable(A) 
⇒ (∀as:T List. Dec(upwd-closure(T;A) as)))
Proof
Definitions occuring in Statement : 
upwd-closure: upwd-closure(T;A)
, 
dec-predicate: Decidable(X)
, 
list: T List
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
upwd-closure: upwd-closure(T;A)
, 
dec-predicate: Decidable(X)
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
Lemmas referenced : 
decidable__exists_iseg, 
list_wf, 
all_wf, 
decidable_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
hypothesis, 
independent_functionElimination, 
dependent_functionElimination, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[A:(T  List)  {}\mrightarrow{}  \mBbbP{}].    (Decidable(A)  {}\mRightarrow{}  (\mforall{}as:T  List.  Dec(upwd-closure(T;A)  as)))
Date html generated:
2016_05_14-PM-04_10_03
Last ObjectModification:
2015_12_26-PM-07_54_25
Theory : fan-theorem
Home
Index