Nuprl Lemma : decidable__upwd-closure

[T:Type]. ∀[A:(T List) ⟶ ℙ].  (Decidable(A)  (∀as:T List. Dec(upwd-closure(T;A) as)))


Proof




Definitions occuring in Statement :  upwd-closure: upwd-closure(T;A) dec-predicate: Decidable(X) list: List decidable: Dec(P) uall: [x:A]. B[x] prop: all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  upwd-closure: upwd-closure(T;A) dec-predicate: Decidable(X) uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] prop:
Lemmas referenced :  decidable__exists_iseg list_wf all_wf decidable_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality applyEquality hypothesis independent_functionElimination dependent_functionElimination functionEquality cumulativity universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[A:(T  List)  {}\mrightarrow{}  \mBbbP{}].    (Decidable(A)  {}\mRightarrow{}  (\mforall{}as:T  List.  Dec(upwd-closure(T;A)  as)))



Date html generated: 2016_05_14-PM-04_10_03
Last ObjectModification: 2015_12_26-PM-07_54_25

Theory : fan-theorem


Home Index