Step * 3 1 1 1 1 1 of Lemma fset-ac-le-distributive


1. Type
2. eq EqDecider(T)
3. {ac:fset(fset(T))| ↑fset-antichain(eq;ac)} 
4. {ac:fset(fset(T))| ↑fset-antichain(eq;ac)} 
5. {ac:fset(fset(T))| ↑fset-antichain(eq;ac)} 
6. fset-ac-le(eq;fset-ac-glb(eq;a;c);fset-ac-glb(eq;a;fset-ac-lub(eq;b;c)))
7. {ac:fset(fset(T))| ↑fset-antichain(eq;ac)} 
8. ∀a1:fset(T). (a1 ∈ fset-ac-glb(eq;a;b)  ({y ∈ deq-f-subset(eq) a1} {} ∈ fset(fset(T)))))
9. ∀a1:fset(T). (a1 ∈ fset-ac-glb(eq;a;c)  ({y ∈ deq-f-subset(eq) a1} {} ∈ fset(fset(T)))))
10. xx fset(T)
11. as fset(T)
12. as ∈ a
13. bs fset(T)
14. bs ∈ fset-ac-lub(eq;b;c)
15. xx as ⋃ bs ∈ fset(T)
16. ∀[ys:fset(T)]
      ↑¬bf-proper-subset-dec(eq;ys;xx) 
      supposing ys ∈ f-union(deq-fset(eq);deq-fset(eq);a;as.λbs.as ⋃ bs"(fset-ac-lub(eq;b;c)))
17. {y ∈ deq-f-subset(eq) xx} {} ∈ fset(fset(T))
18. ∀[ys:fset(T)]. ¬ys ⋃ bs ⊆≠ xx supposing ys ∈ a
19. bs ∈ b
20. fset-all(b ⋃ c;ys.¬bf-proper-subset-dec(eq;ys;bs))
⊢ False
BY
((Assert ∀[ys:fset(T)]. ¬ys ⊆≠ bs supposing ys ∈ b ⋃ BY
          ((InstLemma `fset-all-iff` [⌜fset(T)⌝;⌜deq-fset(eq)⌝]⋅ THENA Auto)
           THEN (RWO  "-1" (-2) THENA Auto)
           THEN Thin (-1)
           THEN RepeatFor (ParallelLast)
           THEN RW assert_pushdownC (-1)
           THEN Auto))
   THEN Thin (-2)
   THEN (Assert ¬xx ∈ fset-ac-glb(eq;a;b) BY
               (D THEN Auto))) }

1
1. Type
2. eq EqDecider(T)
3. {ac:fset(fset(T))| ↑fset-antichain(eq;ac)} 
4. {ac:fset(fset(T))| ↑fset-antichain(eq;ac)} 
5. {ac:fset(fset(T))| ↑fset-antichain(eq;ac)} 
6. fset-ac-le(eq;fset-ac-glb(eq;a;c);fset-ac-glb(eq;a;fset-ac-lub(eq;b;c)))
7. {ac:fset(fset(T))| ↑fset-antichain(eq;ac)} 
8. ∀a1:fset(T). (a1 ∈ fset-ac-glb(eq;a;b)  ({y ∈ deq-f-subset(eq) a1} {} ∈ fset(fset(T)))))
9. ∀a1:fset(T). (a1 ∈ fset-ac-glb(eq;a;c)  ({y ∈ deq-f-subset(eq) a1} {} ∈ fset(fset(T)))))
10. xx fset(T)
11. as fset(T)
12. as ∈ a
13. bs fset(T)
14. bs ∈ fset-ac-lub(eq;b;c)
15. xx as ⋃ bs ∈ fset(T)
16. ∀[ys:fset(T)]
      ↑¬bf-proper-subset-dec(eq;ys;xx) 
      supposing ys ∈ f-union(deq-fset(eq);deq-fset(eq);a;as.λbs.as ⋃ bs"(fset-ac-lub(eq;b;c)))
17. {y ∈ deq-f-subset(eq) xx} {} ∈ fset(fset(T))
18. ∀[ys:fset(T)]. ¬ys ⋃ bs ⊆≠ xx supposing ys ∈ a
19. bs ∈ b
20. ∀[ys:fset(T)]. ¬ys ⊆≠ bs supposing ys ∈ b ⋃ c
21. ¬xx ∈ fset-ac-glb(eq;a;b)
⊢ False


Latex:


Latex:

1.  T  :  Type
2.  eq  :  EqDecider(T)
3.  a  :  \{ac:fset(fset(T))|  \muparrow{}fset-antichain(eq;ac)\} 
4.  b  :  \{ac:fset(fset(T))|  \muparrow{}fset-antichain(eq;ac)\} 
5.  c  :  \{ac:fset(fset(T))|  \muparrow{}fset-antichain(eq;ac)\} 
6.  fset-ac-le(eq;fset-ac-glb(eq;a;c);fset-ac-glb(eq;a;fset-ac-lub(eq;b;c)))
7.  x  :  \{ac:fset(fset(T))|  \muparrow{}fset-antichain(eq;ac)\} 
8.  \mforall{}a1:fset(T).  (a1  \mmember{}  fset-ac-glb(eq;a;b)  {}\mRightarrow{}  (\mneg{}(\{y  \mmember{}  x  |  deq-f-subset(eq)  y  a1\}  =  \{\})))
9.  \mforall{}a1:fset(T).  (a1  \mmember{}  fset-ac-glb(eq;a;c)  {}\mRightarrow{}  (\mneg{}(\{y  \mmember{}  x  |  deq-f-subset(eq)  y  a1\}  =  \{\})))
10.  xx  :  fset(T)
11.  as  :  fset(T)
12.  as  \mmember{}  a
13.  bs  :  fset(T)
14.  bs  \mmember{}  fset-ac-lub(eq;b;c)
15.  xx  =  as  \mcup{}  bs
16.  \mforall{}[ys:fset(T)]
            \muparrow{}\mneg{}\msubb{}f-proper-subset-dec(eq;ys;xx) 
            supposing  ys  \mmember{}  f-union(deq-fset(eq);deq-fset(eq);a;as.\mlambda{}bs.as  \mcup{}  bs"(fset-ac-lub(eq;b;c)))
17.  \{y  \mmember{}  x  |  deq-f-subset(eq)  y  xx\}  =  \{\}
18.  \mforall{}[ys:fset(T)].  \mneg{}ys  \mcup{}  bs  \msubseteq{}\mneq{}  xx  supposing  ys  \mmember{}  a
19.  bs  \mmember{}  b
20.  fset-all(b  \mcup{}  c;ys.\mneg{}\msubb{}f-proper-subset-dec(eq;ys;bs))
\mvdash{}  False


By


Latex:
((Assert  \mforall{}[ys:fset(T)].  \mneg{}ys  \msubseteq{}\mneq{}  bs  supposing  ys  \mmember{}  b  \mcup{}  c  BY
                ((InstLemma  `fset-all-iff`  [\mkleeneopen{}fset(T)\mkleeneclose{};\mkleeneopen{}deq-fset(eq)\mkleeneclose{}]\mcdot{}  THENA  Auto)
                  THEN  (RWO    "-1"  (-2)  THENA  Auto)
                  THEN  Thin  (-1)
                  THEN  RepeatFor  2  (ParallelLast)
                  THEN  RW  assert\_pushdownC  (-1)
                  THEN  Auto))
  THEN  Thin  (-2)
  THEN  (Assert  \mneg{}xx  \mmember{}  fset-ac-glb(eq;a;b)  BY
                          (D  0  THEN  Auto)))




Home Index