Step * 1 2 2 2 1 1 2 of Lemma Dickson's lemma


1. : ℕ
2. ∀p1:ℕp. ∀A:ℕp1 ⟶ ℕ ⟶ ℕ.  ∃j:ℕ. ∃i:ℕj. ∀k:ℕp1. (A[k;i] ≤ A[k;j])
3. : ℕp ⟶ ℕ ⟶ ℕ
4. ¬(p 0 ∈ ℤ)
5. n:ℕ ⟶ ℕ
6. ∀n:ℕ(n < n ∧ ((∃b:ℕ. ∃a:ℕb. ∀k:ℕp. (A[k;a] ≤ A[k;b])) ∨ (A[0;n] ≤ A[0;G n])))
7. ∀b:ℕ. ∀a:ℕb.  G^a 0 < G^b 0
8. : ℕ
⊢ (∃b:ℕ. ∃a:ℕb. ∀k:ℕp. (A[k;a] ≤ A[k;b])) ∨ (A[0;G^l 0] ≤ A[0;G^l 0])
BY
(RWO "fun_exp_add1<0⋅ THEN Auto)⋅ }


Latex:


Latex:

1.  p  :  \mBbbN{}
2.  \mforall{}p1:\mBbbN{}p.  \mforall{}A:\mBbbN{}p1  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbN{}.    \mexists{}j:\mBbbN{}.  \mexists{}i:\mBbbN{}j.  \mforall{}k:\mBbbN{}p1.  (A[k;i]  \mleq{}  A[k;j])
3.  A  :  \mBbbN{}p  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbN{}
4.  \mneg{}(p  =  0)
5.  G  :  n:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}
6.  \mforall{}n:\mBbbN{}.  (n  <  G  n  \mwedge{}  ((\mexists{}b:\mBbbN{}.  \mexists{}a:\mBbbN{}b.  \mforall{}k:\mBbbN{}p.  (A[k;a]  \mleq{}  A[k;b]))  \mvee{}  (A[0;n]  \mleq{}  A[0;G  n])))
7.  \mforall{}b:\mBbbN{}.  \mforall{}a:\mBbbN{}b.    G\^{}a  0  <  G\^{}b  0
8.  l  :  \mBbbN{}
\mvdash{}  (\mexists{}b:\mBbbN{}.  \mexists{}a:\mBbbN{}b.  \mforall{}k:\mBbbN{}p.  (A[k;a]  \mleq{}  A[k;b]))  \mvee{}  (A[0;G\^{}l  0]  \mleq{}  A[0;G\^{}l  +  1  0])


By


Latex:
(RWO  "fun\_exp\_add1<"  0\mcdot{}  THEN  Auto)\mcdot{}




Home Index