Step
*
1
1
1
1
1
4
1
of Lemma
cWO-induction-extract-sqequal
1. f : Base
2. G : Base
3. G ~ λf,bar_recursion,n,s. case if (0) < (n)
then if s (n - 1) then inr (λp.let _,_ = p in Ax) else inl <Ax, Ax> fi
else (inr (λp.let _,_ = p
in Ax) )
of inl(r) =>
λa.let _,_ = r
in Ax
| inr(r) =>
λa.(f a (λs1.(bar_recursion (n + 1) (λm.if m=n then inl a else (s m)) s1)))
4. j : ℤ
5. j ≠ 0
6. 0 < j
7. ∀t,s1:Base. ∀n:ℕ+. ∀x:Base. (f s1 (λF,t. (f t F)^j - 1 ⊥) ≤ G f fix((G f)) n (λm.if m=n - 1 then inl t else (x m))\000C s1)
8. t : Base
9. s1 : Base
10. n : ℕ+
11. x : Base
12. 0 < n
13. t@0 : Base
⊢ f t@0 (λF,t. (f t F)^j - 1 ⊥) ≤ fix((G f)) (n + 1) (λm.if m=n then inl s1 else if m=n - 1 then inl t else (x m)) t\000C@0
BY
{ (RW (SweepUpC UnrollRecursionC) 0
THEN (InstHyp [⌜s1⌝;⌜t@0⌝;⌜n + 1⌝;⌜λm.if m=n - 1 then inl t else (x m)⌝] (-7)⋅ THENA Auto)
THEN Reduce (-1)⋅
THEN NthHypSq (-1)
THEN RepeatFor 5 ((EqCD THEN Try (Trivial)))
THEN Auto) }
Latex:
Latex:
1. f : Base
2. G : Base
3. G \msim{} \mlambda{}f,bar$_{recursion}$,n,s. case if (0) < (n)
then if s (n - 1)
then inr (\mlambda{}p.let $_{}$,$_{\mbackslash{}\000Cff7d$ = p
in Ax)
else inl <Ax, Ax>
fi
else (inr (\mlambda{}p.let $_{}$,$_{}\000C$ = p
in Ax) )
of inl(r) =>
\mlambda{}a.let $_{}$,$_{}$ = r
in Ax
| inr(r) =>
\mlambda{}a.(f a
(\mlambda{}s1.(bar$_{recursion}$ (n + 1) (\mlambda{}m.if m=n then\000C inl a else (s m)) s1)))
4. j : \mBbbZ{}
5. j \mneq{} 0
6. 0 < j
7. \mforall{}t,s1:Base. \mforall{}n:\mBbbN{}\msupplus{}. \mforall{}x:Base.
(f s1 (\mlambda{}F,t. (f t F)\^{}j - 1 \mbot{}) \mleq{} G f fix((G f)) n (\mlambda{}m.if m=n - 1 then inl t else (x m)) s1)
8. t : Base
9. s1 : Base
10. n : \mBbbN{}\msupplus{}
11. x : Base
12. 0 < n
13. t@0 : Base
\mvdash{} f t@0 (\mlambda{}F,t. (f t F)\^{}j - 1 \mbot{}) \mleq{} fix((G f)) (n + 1)
(\mlambda{}m.if m=n then inl s1 else if m=n - 1 then inl t else (x m))
t@0
By
Latex:
(RW (SweepUpC UnrollRecursionC) 0
THEN (InstHyp [\mkleeneopen{}s1\mkleeneclose{};\mkleeneopen{}t@0\mkleeneclose{};\mkleeneopen{}n + 1\mkleeneclose{};\mkleeneopen{}\mlambda{}m.if m=n - 1 then inl t else (x m)\mkleeneclose{}] (-7)\mcdot{} THENA Auto)
THEN Reduce (-1)\mcdot{}
THEN NthHypSq (-1)
THEN RepeatFor 5 ((EqCD THEN Try (Trivial)))
THEN Auto)
Home
Index