Nuprl Lemma : inv_funs_sym

[A,B:Type]. ∀[f:A ⟶ B]. ∀[g:B ⟶ A].  InvFuns(B;A;g;f) supposing InvFuns(A;B;f;g)


Proof




Definitions occuring in Statement :  inv_funs: InvFuns(A;B;f;g) uimplies: supposing a uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a inv_funs: InvFuns(A;B;f;g) and: P ∧ Q cand: c∧ B prop:
Lemmas referenced :  inv_funs_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalHypSubstitution productElimination thin hypothesis independent_pairFormation sqequalRule independent_pairEquality axiomEquality Error :universeIsType,  extract_by_obid isectElimination hypothesisEquality isect_memberEquality equalityTransitivity equalitySymmetry Error :functionIsType,  because_Cache functionEquality Error :inhabitedIsType,  universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[g:B  {}\mrightarrow{}  A].    InvFuns(B;A;g;f)  supposing  InvFuns(A;B;f;g)



Date html generated: 2019_06_20-PM-00_26_30
Last ObjectModification: 2018_09_26-PM-00_09_28

Theory : fun_1


Home Index