Nuprl Lemma : nat_plus_inc_nat

+ ⊆ ℕ


Proof




Definitions occuring in Statement :  nat_plus: + nat: subtype: S ⊆ T
Definitions unfolded in proof :  subtype: S ⊆ T all: x:A. B[x] member: t ∈ T nat_plus: + nat: guard: {T} uimplies: supposing a uall: [x:A]. B[x] prop:
Lemmas referenced :  le_weakening2 le_wf nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality hypothesisEquality cut hypothesis introduction extract_by_obid dependent_functionElimination natural_numberEquality independent_isectElimination isectElimination

Latex:
\mBbbN{}\msupplus{}  \msubseteq{}  \mBbbN{}



Date html generated: 2018_05_21-PM-00_04_01
Last ObjectModification: 2018_05_19-AM-07_10_39

Theory : int_1


Home Index