Nuprl Lemma : nat_plus_inc_nat
ℕ+ ⊆ ℕ
Proof
Definitions occuring in Statement : 
nat_plus: ℕ+
, 
nat: ℕ
, 
subtype: S ⊆ T
Definitions unfolded in proof : 
subtype: S ⊆ T
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
guard: {T}
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
Lemmas referenced : 
le_weakening2, 
le_wf, 
nat_plus_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality, 
hypothesisEquality, 
cut, 
hypothesis, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
natural_numberEquality, 
independent_isectElimination, 
isectElimination
Latex:
\mBbbN{}\msupplus{}  \msubseteq{}  \mBbbN{}
Date html generated:
2018_05_21-PM-00_04_01
Last ObjectModification:
2018_05_19-AM-07_10_39
Theory : int_1
Home
Index