Nuprl Lemma : int-prod-split2
∀[n:ℕ]. ∀[m:ℕn + 1]. ∀[f:ℕn ⟶ ℤ].  (Π(f[x] | x < n) = (Π(f[x] | x < m) * Π(f[x + m] | x < n - m)) ∈ ℤ)
Proof
Definitions occuring in Statement : 
int-prod: Π(f[x] | x < k)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
multiply: n * m
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
nat: ℕ
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
nat_wf, 
int_seg_wf, 
int-prod-split
Rules used in proof : 
addEquality, 
because_Cache, 
axiomEquality, 
isect_memberEquality, 
intEquality, 
functionEquality, 
hypothesis, 
rename, 
setElimination, 
natural_numberEquality, 
functionExtensionality, 
applyEquality, 
lambdaEquality, 
sqequalRule, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[m:\mBbbN{}n  +  1].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}].    (\mPi{}(f[x]  |  x  <  n)  =  (\mPi{}(f[x]  |  x  <  m)  *  \mPi{}(f[x  +  m]  |  x  <  n  -  m)))
Date html generated:
2018_05_21-PM-00_29_14
Last ObjectModification:
2017_12_10-PM-01_45_16
Theory : int_2
Home
Index