Nuprl Lemma : int-prod-split2

[n:ℕ]. ∀[m:ℕ1]. ∀[f:ℕn ⟶ ℤ].  (f[x] x < n) (f[x] x < m) * Π(f[x m] x < m)) ∈ ℤ)


Proof




Definitions occuring in Statement :  int-prod: Π(f[x] x < k) int_seg: {i..j-} nat: uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] multiply: m subtract: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  nat: so_apply: x[s] so_lambda: λ2x.t[x] member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  nat_wf int_seg_wf int-prod-split
Rules used in proof :  addEquality because_Cache axiomEquality isect_memberEquality intEquality functionEquality hypothesis rename setElimination natural_numberEquality functionExtensionality applyEquality lambdaEquality sqequalRule hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[m:\mBbbN{}n  +  1].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}].    (\mPi{}(f[x]  |  x  <  n)  =  (\mPi{}(f[x]  |  x  <  m)  *  \mPi{}(f[x  +  m]  |  x  <  n  -  m)))



Date html generated: 2018_05_21-PM-00_29_14
Last ObjectModification: 2017_12_10-PM-01_45_16

Theory : int_2


Home Index