Nuprl Lemma : mul_functionality_wrt_eq
∀[i1,i2,j1,j2:ℤ].  ((i1 * i2) = (j1 * j2) ∈ ℤ) supposing ((i2 = j2 ∈ ℤ) and (i1 = j1 ∈ ℤ))
Proof
Definitions occuring in Statement : 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
multiply: n * m
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
Lemmas referenced : 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
multiplyEquality, 
hypothesis, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
hypothesisEquality, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[i1,i2,j1,j2:\mBbbZ{}].    ((i1  *  i2)  =  (j1  *  j2))  supposing  ((i2  =  j2)  and  (i1  =  j1))
Date html generated:
2016_05_14-AM-07_20_35
Last ObjectModification:
2015_12_26-PM-01_32_17
Theory : int_2
Home
Index