Nuprl Lemma : mul_functionality_wrt_eq

[i1,i2,j1,j2:ℤ].  ((i1 i2) (j1 j2) ∈ ℤsupposing ((i2 j2 ∈ ℤand (i1 j1 ∈ ℤ))


Proof




Definitions occuring in Statement :  uimplies: supposing a uall: [x:A]. B[x] multiply: m int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop:
Lemmas referenced :  equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut multiplyEquality hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin intEquality hypothesisEquality sqequalRule isect_memberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry

Latex:
\mforall{}[i1,i2,j1,j2:\mBbbZ{}].    ((i1  *  i2)  =  (j1  *  j2))  supposing  ((i2  =  j2)  and  (i1  =  j1))



Date html generated: 2016_05_14-AM-07_20_35
Last ObjectModification: 2015_12_26-PM-01_32_17

Theory : int_2


Home Index