Nuprl Lemma : mul_ident

[i:ℤ]. (i (i 1) ∈ ℤ)


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] multiply: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop:
Lemmas referenced :  int_formula_prop_wf int_term_value_constant_lemma int_term_value_mul_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma itermConstant_wf itermMultiply_wf itermVar_wf intformeq_wf intformnot_wf satisfiable-full-omega-tt decidable__equal_int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin because_Cache hypothesis unionElimination isectElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality hypothesisEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule computeAll

Latex:
\mforall{}[i:\mBbbZ{}].  (i  =  (i  *  1))



Date html generated: 2016_05_14-AM-07_20_25
Last ObjectModification: 2016_01_07-PM-03_59_45

Theory : int_2


Home Index