Nuprl Lemma : sq_stable__ex_int_seg_ap

n,m:ℤ. ∀f:{n..m-} ⟶ 𝔹.  SqStable(∃k:{n..m-}. (↑(f k)))


Proof




Definitions occuring in Statement :  int_seg: {i..j-} assert: b bool: 𝔹 sq_stable: SqStable(P) all: x:A. B[x] exists: x:A. B[x] apply: a function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q
Lemmas referenced :  sq_stable_from_decidable exists_wf int_seg_wf assert_wf decidable__exists_int_seg decidable__assert bool_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule lambdaEquality applyEquality independent_functionElimination instantiate dependent_functionElimination functionEquality intEquality

Latex:
\mforall{}n,m:\mBbbZ{}.  \mforall{}f:\{n..m\msupminus{}\}  {}\mrightarrow{}  \mBbbB{}.    SqStable(\mexists{}k:\{n..m\msupminus{}\}.  (\muparrow{}(f  k)))



Date html generated: 2016_05_14-AM-07_29_18
Last ObjectModification: 2015_12_26-PM-01_26_50

Theory : int_2


Home Index