Nuprl Lemma : sq_stable__ex_int_seg_ap
∀n,m:ℤ. ∀f:{n..m-} ⟶ 𝔹.  SqStable(∃k:{n..m-}. (↑(f k)))
Proof
Definitions occuring in Statement : 
int_seg: {i..j-}, 
assert: ↑b, 
bool: 𝔹, 
sq_stable: SqStable(P), 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
apply: f a, 
function: x:A ⟶ B[x], 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
implies: P ⇒ Q
Lemmas referenced : 
sq_stable_from_decidable, 
exists_wf, 
int_seg_wf, 
assert_wf, 
decidable__exists_int_seg, 
decidable__assert, 
bool_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
independent_functionElimination, 
instantiate, 
dependent_functionElimination, 
functionEquality, 
intEquality
Latex:
\mforall{}n,m:\mBbbZ{}.  \mforall{}f:\{n..m\msupminus{}\}  {}\mrightarrow{}  \mBbbB{}.    SqStable(\mexists{}k:\{n..m\msupminus{}\}.  (\muparrow{}(f  k)))
Date html generated:
2016_05_14-AM-07_29_18
Last ObjectModification:
2015_12_26-PM-01_26_50
Theory : int_2
Home
Index