Nuprl Lemma : cons-not-nil

[S:Type]. ∀[a:S]. ∀[b:S List].  ([a b] [] ∈ (S List)))


Proof




Definitions occuring in Statement :  cons: [a b] nil: [] list: List uall: [x:A]. B[x] not: ¬A universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T not: ¬A implies:  Q false: False
Lemmas referenced :  cons_neq_nil cons_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut Error :lambdaFormation_alt,  thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis independent_functionElimination voidElimination Error :equalityIsType3,  Error :inhabitedIsType,  baseClosed sqequalRule Error :lambdaEquality_alt,  dependent_functionElimination because_Cache Error :universeIsType,  Error :isect_memberEquality_alt,  universeEquality

Latex:
\mforall{}[S:Type].  \mforall{}[a:S].  \mforall{}[b:S  List].    (\mneg{}([a  /  b]  =  []))



Date html generated: 2019_06_20-PM-00_40_26
Last ObjectModification: 2018_09_30-PM-11_01_37

Theory : list_0


Home Index