Nuprl Lemma : filter_trivial2

[T:Type]. ∀[P:T ⟶ 𝔹]. ∀[L:T List].  filter(P;L) L ∈ (T List) supposing (∀x∈L.↑P[x])


Proof




Definitions occuring in Statement :  l_all: (∀x∈L.P[x]) filter: filter(P;l) list: List assert: b bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  prop: so_apply: x[s] so_lambda: λ2x.t[x] uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  istype-universe bool_wf list_wf l_member_wf assert_wf l_all_wf filter_trivial
Rules used in proof :  universeEquality instantiate Error :functionIsType,  Error :inhabitedIsType,  Error :isectIsTypeImplies,  axiomEquality Error :isect_memberEquality_alt,  Error :setIsType,  rename setElimination applyEquality Error :lambdaEquality_alt,  Error :universeIsType,  hypothesis independent_isectElimination hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction Error :isect_memberFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[L:T  List].    filter(P;L)  =  L  supposing  (\mforall{}x\mmember{}L.\muparrow{}P[x])



Date html generated: 2019_06_20-PM-01_05_36
Last ObjectModification: 2019_06_20-PM-00_45_15

Theory : list_0


Home Index