Nuprl Lemma : filter_trivial2
∀[T:Type]. ∀[P:T ⟶ 𝔹]. ∀[L:T List].  filter(P;L) = L ∈ (T List) supposing (∀x∈L.↑P[x])
Proof
Definitions occuring in Statement : 
l_all: (∀x∈L.P[x]), 
filter: filter(P;l), 
list: T List, 
assert: ↑b, 
bool: 𝔹, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
prop: ℙ, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
uimplies: b supposing a, 
member: t ∈ T, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
istype-universe, 
bool_wf, 
list_wf, 
l_member_wf, 
assert_wf, 
l_all_wf, 
filter_trivial
Rules used in proof : 
universeEquality, 
instantiate, 
Error :functionIsType, 
Error :inhabitedIsType, 
Error :isectIsTypeImplies, 
axiomEquality, 
Error :isect_memberEquality_alt, 
Error :setIsType, 
rename, 
setElimination, 
applyEquality, 
Error :lambdaEquality_alt, 
Error :universeIsType, 
hypothesis, 
independent_isectElimination, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
Error :isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[L:T  List].    filter(P;L)  =  L  supposing  (\mforall{}x\mmember{}L.\muparrow{}P[x])
Date html generated:
2019_06_20-PM-01_05_36
Last ObjectModification:
2019_06_20-PM-00_45_15
Theory : list_0
Home
Index