Nuprl Lemma : isaxiom-append-nil
∀[l:Base]. (↑isaxiom(l)) supposing ((↑isaxiom(l @ [])) and (l @ [])↓)
Proof
Definitions occuring in Statement : 
append: as @ bs
, 
nil: []
, 
has-value: (a)↓
, 
assert: ↑b
, 
bfalse: ff
, 
btrue: tt
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
isaxiom: if z = Ax then a otherwise b
, 
base: Base
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
append: as @ bs
, 
list_ind: list_ind, 
member: t ∈ T
, 
has-value: (a)↓
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
cons: [a / b]
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
false: False
, 
top: Top
, 
nil: []
, 
it: ⋅
, 
btrue: tt
, 
true: True
, 
not: ¬A
, 
prop: ℙ
Lemmas referenced : 
has-value-implies-dec-ispair-2, 
top_wf, 
has-value-implies-dec-isaxiom-2, 
bottom_diverge, 
assert_wf, 
has-value_wf_base, 
is-exception_wf, 
btrue_wf, 
bfalse_wf, 
base_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
sqequalHypSubstitution, 
sqequalRule, 
introduction, 
cut, 
callbyvalueCallbyvalue, 
hypothesis, 
callbyvalueReduce, 
extract_by_obid, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
unionElimination, 
voidElimination, 
lambdaFormation, 
isect_memberEquality, 
voidEquality, 
axiomEquality, 
natural_numberEquality, 
Error :universeIsType, 
isectElimination, 
isaxiomCases, 
divergentSqle, 
baseClosed, 
baseApply, 
closedConclusion, 
axiomSqEquality, 
Error :inhabitedIsType
Latex:
\mforall{}[l:Base].  (\muparrow{}isaxiom(l))  supposing  ((\muparrow{}isaxiom(l  @  []))  and  (l  @  [])\mdownarrow{})
Date html generated:
2019_06_20-PM-00_39_30
Last ObjectModification:
2018_09_26-PM-02_10_34
Theory : list_0
Home
Index