Nuprl Lemma : nil-not-cons

[S:Type]. ∀[a:S]. ∀[b:S List].  ([] [a b] ∈ (S List)))


Proof




Definitions occuring in Statement :  cons: [a b] nil: [] list: List uall: [x:A]. B[x] not: ¬A universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T not: ¬A implies:  Q false: False
Lemmas referenced :  cons-not-nil cons_wf list_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality Error :lambdaFormation_alt,  independent_functionElimination equalitySymmetry voidElimination Error :equalityIsType2,  Error :inhabitedIsType,  baseClosed Error :universeIsType,  universeEquality

Latex:
\mforall{}[S:Type].  \mforall{}[a:S].  \mforall{}[b:S  List].    (\mneg{}([]  =  [a  /  b]))



Date html generated: 2019_06_20-PM-00_40_29
Last ObjectModification: 2018_09_30-PM-11_06_48

Theory : list_0


Home Index