Nuprl Lemma : not-cons-sq-nil
∀[u,v:Top].  (([u / v] ~ []) = (0 ~ 1) ∈ Type)
Proof
Definitions occuring in Statement : 
cons: [a / b], 
nil: [], 
uall: ∀[x:A]. B[x], 
top: Top, 
natural_number: $n, 
universe: Type, 
sqequal: s ~ t, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
not: ¬A, 
cons: [a / b], 
nil: [], 
it: ⋅, 
uimplies: b supposing a, 
sq_type: SQType(T), 
all: ∀x:A. B[x], 
guard: {T}, 
true: True, 
false: False
Lemmas referenced : 
istype-top, 
false-sqequal, 
subtype_base_sq, 
int_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
pointwiseFunctionalityForEquality, 
universeEquality, 
hypothesis, 
Error :inhabitedIsType, 
hypothesisEquality, 
sqequalRule, 
sqequalHypSubstitution, 
Error :isect_memberEquality_alt, 
isectElimination, 
thin, 
axiomEquality, 
extract_by_obid, 
baseApply, 
closedConclusion, 
baseClosed, 
independent_functionElimination, 
Error :lambdaFormation_alt, 
Error :universeIsType, 
sqequalIntensionalEquality, 
natural_numberEquality, 
instantiate, 
cumulativity, 
intEquality, 
independent_isectElimination, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
voidElimination
Latex:
\mforall{}[u,v:Top].    (([u  /  v]  \msim{}  [])  =  (0  \msim{}  1))
Date html generated:
2019_06_20-PM-00_38_22
Last ObjectModification:
2018_10_07-PM-01_00_21
Theory : list_0
Home
Index