Nuprl Lemma : false-sqequal

[a,b:Base].  ((¬(a b))  ((a b) (0 1) ∈ Type))


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] not: ¬A implies:  Q natural_number: $n base: Base universe: Type sqequal: t equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q iff: ⇐⇒ Q and: P ∧ Q not: ¬A false: False rev_implies:  Q uimplies: supposing a sq_type: SQType(T) all: x:A. B[x] guard: {T} squash: T prop: true: True
Lemmas referenced :  subtype_base_sq base_wf subtype_rel_self false_wf int_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut Error :lambdaFormation_alt,  sqequalExtensionalEquality independent_pairFormation sqequalHypSubstitution independent_functionElimination thin hypothesis voidElimination Error :universeIsType,  because_Cache instantiate extract_by_obid isectElimination cumulativity independent_isectElimination dependent_functionElimination hypothesisEquality sqequalIntensionalEquality baseClosed sqequalRule imageMemberEquality Error :functionIsType,  Error :lambdaEquality_alt,  axiomEquality Error :functionIsTypeImplies,  Error :inhabitedIsType,  Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  equalitySymmetry equalityTransitivity intEquality natural_numberEquality

Latex:
\mforall{}[a,b:Base].    ((\mneg{}(a  \msim{}  b))  {}\mRightarrow{}  ((a  \msim{}  b)  =  (0  \msim{}  1)))



Date html generated: 2019_06_20-AM-11_19_43
Last ObjectModification: 2018_10_15-PM-10_52_07

Theory : sqequal_1


Home Index