Nuprl Lemma : false-sqequal
∀[a,b:Base].  ((¬(a ~ b)) 
⇒ ((a ~ b) = (0 ~ 1) ∈ Type))
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
natural_number: $n
, 
base: Base
, 
universe: Type
, 
sqequal: s ~ t
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
not: ¬A
, 
false: False
, 
rev_implies: P 
⇐ Q
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
Lemmas referenced : 
subtype_base_sq, 
base_wf, 
subtype_rel_self, 
false_wf, 
int_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
Error :lambdaFormation_alt, 
sqequalExtensionalEquality, 
independent_pairFormation, 
sqequalHypSubstitution, 
independent_functionElimination, 
thin, 
hypothesis, 
voidElimination, 
Error :universeIsType, 
because_Cache, 
instantiate, 
extract_by_obid, 
isectElimination, 
cumulativity, 
independent_isectElimination, 
dependent_functionElimination, 
hypothesisEquality, 
sqequalIntensionalEquality, 
baseClosed, 
sqequalRule, 
imageMemberEquality, 
Error :functionIsType, 
Error :lambdaEquality_alt, 
axiomEquality, 
Error :functionIsTypeImplies, 
Error :inhabitedIsType, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies, 
equalitySymmetry, 
equalityTransitivity, 
intEquality, 
natural_numberEquality
Latex:
\mforall{}[a,b:Base].    ((\mneg{}(a  \msim{}  b))  {}\mRightarrow{}  ((a  \msim{}  b)  =  (0  \msim{}  1)))
Date html generated:
2019_06_20-AM-11_19_43
Last ObjectModification:
2018_10_15-PM-10_52_07
Theory : sqequal_1
Home
Index