Nuprl Lemma : rev-append-append
∀[as:Top List]. ∀[bs,cs:Top].  (rev(as @ bs) + cs ~ rev(bs) + rev(as) + cs)
Proof
Definitions occuring in Statement : 
rev-append: rev(as) + bs
, 
append: as @ bs
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rev-append: rev(as) + bs
, 
so_lambda: λ2x y.t[x; y]
, 
top: Top
, 
so_apply: x[s1;s2]
Lemmas referenced : 
list_accum_append, 
top_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
sqequalAxiom, 
because_Cache
Latex:
\mforall{}[as:Top  List].  \mforall{}[bs,cs:Top].    (rev(as  @  bs)  +  cs  \msim{}  rev(bs)  +  rev(as)  +  cs)
Date html generated:
2016_05_14-AM-06_31_48
Last ObjectModification:
2015_12_26-PM-00_38_04
Theory : list_0
Home
Index