Nuprl Lemma : rev-append-append

[as:Top List]. ∀[bs,cs:Top].  (rev(as bs) cs rev(bs) rev(as) cs)


Proof




Definitions occuring in Statement :  rev-append: rev(as) bs append: as bs list: List uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rev-append: rev(as) bs so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2]
Lemmas referenced :  list_accum_append top_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality isect_memberEquality voidElimination voidEquality hypothesis sqequalAxiom because_Cache

Latex:
\mforall{}[as:Top  List].  \mforall{}[bs,cs:Top].    (rev(as  @  bs)  +  cs  \msim{}  rev(bs)  +  rev(as)  +  cs)



Date html generated: 2016_05_14-AM-06_31_48
Last ObjectModification: 2015_12_26-PM-00_38_04

Theory : list_0


Home Index