Nuprl Lemma : whole_segment
∀T:Type. ∀as:T List.  ((as[0..||as||-]) = as ∈ (T List))
Proof
Definitions occuring in Statement : 
segment: as[m..n-]
, 
length: ||as||
, 
list: T List
, 
all: ∀x:A. B[x]
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
top: Top
Lemmas referenced : 
whole_segment-sq, 
subtype_rel_list, 
top_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalRule, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
isectElimination, 
hypothesis, 
independent_isectElimination, 
lambdaEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}T:Type.  \mforall{}as:T  List.    ((as[0..||as||\msupminus{}])  =  as)
Date html generated:
2018_05_21-PM-00_19_29
Last ObjectModification:
2018_05_19-AM-06_59_46
Theory : list_0
Home
Index