Nuprl Lemma : whole_segment

T:Type. ∀as:T List.  ((as[0..||as||-]) as ∈ (T List))


Proof




Definitions occuring in Statement :  segment: as[m..n-] length: ||as|| list: List all: x:A. B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T subtype_rel: A ⊆B uall: [x:A]. B[x] uimplies: supposing a top: Top
Lemmas referenced :  whole_segment-sq subtype_rel_list top_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality applyEquality isectElimination hypothesis independent_isectElimination lambdaEquality isect_memberEquality voidElimination voidEquality because_Cache universeEquality

Latex:
\mforall{}T:Type.  \mforall{}as:T  List.    ((as[0..||as||\msupminus{}])  =  as)



Date html generated: 2018_05_21-PM-00_19_29
Last ObjectModification: 2018_05_19-AM-06_59_46

Theory : list_0


Home Index