Nuprl Lemma : combine-list-flip
∀[A:Type]. ∀[f:A ⟶ A ⟶ A].
  (∀[as:A List]. ∀[a1,a2:A].
     (combine-list(x,y.f[x;y];[a1; [a2 / as]]) = combine-list(x,y.f[x;y];[a2; [a1 / as]]) ∈ A)) supposing 
     (Comm(A;λx,y. f[x;y]) and 
     Assoc(A;λx,y. f[x;y]))
Proof
Definitions occuring in Statement : 
combine-list: combine-list(x,y.f[x; y];L)
, 
cons: [a / b]
, 
list: T List
, 
comm: Comm(T;op)
, 
assoc: Assoc(T;op)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
combine-list: combine-list(x,y.f[x; y];L)
, 
all: ∀x:A. B[x]
, 
top: Top
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
prop: ℙ
, 
comm: Comm(T;op)
, 
infix_ap: x f y
, 
true: True
, 
squash: ↓T
Lemmas referenced : 
list_wf, 
true_wf, 
squash_wf, 
list_accum_wf, 
assoc_wf, 
comm_wf, 
list_accum_cons_lemma, 
reduce_tl_cons_lemma, 
reduce_hd_cons_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
because_Cache, 
isectElimination, 
hypothesisEquality, 
axiomEquality, 
lambdaEquality, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
imageElimination, 
functionEquality, 
universeEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[A:Type].  \mforall{}[f:A  {}\mrightarrow{}  A  {}\mrightarrow{}  A].
    (\mforall{}[as:A  List].  \mforall{}[a1,a2:A].
          (combine-list(x,y.f[x;y];[a1;  [a2  /  as]])
          =  combine-list(x,y.f[x;y];[a2;  [a1  /  as]])))  supposing 
          (Comm(A;\mlambda{}x,y.  f[x;y])  and 
          Assoc(A;\mlambda{}x,y.  f[x;y]))
Date html generated:
2016_05_14-PM-01_40_59
Last ObjectModification:
2016_01_15-AM-08_23_58
Theory : list_1
Home
Index