Nuprl Lemma : compat_wf
∀[T:Type]. ∀[l1,l2:T List]. (l1 || l2 ∈ ℙ)
Proof
Definitions occuring in Statement :
compat: l1 || l2
,
list: T List
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
member: t ∈ T
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
compat: l1 || l2
Lemmas referenced :
or_wf,
iseg_wf,
list_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
Error :isect_memberFormation_alt,
introduction,
cut,
sqequalRule,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
Error :inhabitedIsType,
isect_memberEquality,
Error :universeIsType,
because_Cache,
universeEquality
Latex:
\mforall{}[T:Type]. \mforall{}[l1,l2:T List]. (l1 || l2 \mmember{} \mBbbP{})
Date html generated:
2019_06_20-PM-01_30_02
Last ObjectModification:
2018_09_26-PM-05_51_01
Theory : list_1
Home
Index