Nuprl Lemma : has-value-l-last

[l:Base]. l ∈ Top × Top supposing (l-last(l))↓


Proof




Definitions occuring in Statement :  l-last: l-last(l) has-value: (a)↓ uimplies: supposing a uall: [x:A]. B[x] top: Top member: t ∈ T product: x:A × B[x] base: Base
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a l-last: l-last(l) l-last-default: l-last-default(l;d) list_ind: list_ind has-value: (a)↓ all: x:A. B[x] implies:  Q or: P ∨ Q top: Top not: ¬A false: False prop:
Lemmas referenced :  base_wf has-value_wf_base bottom_diverge has-value-implies-dec-isaxiom-2 top_wf has-value-implies-dec-ispair-2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution sqequalRule callbyvalueApply hypothesis callbyvalueCallbyvalue callbyvalueReduce lemma_by_obid dependent_functionElimination thin hypothesisEquality independent_functionElimination unionElimination independent_pairEquality isect_memberEquality voidElimination voidEquality lambdaFormation axiomEquality equalityTransitivity equalitySymmetry isectElimination baseApply closedConclusion baseClosed because_Cache

Latex:
\mforall{}[l:Base].  l  \mmember{}  Top  \mtimes{}  Top  supposing  (l-last(l))\mdownarrow{}



Date html generated: 2016_05_14-AM-07_41_47
Last ObjectModification: 2016_01_15-AM-08_35_46

Theory : list_1


Home Index