Nuprl Lemma : hd-reverse

[T:Type]. ∀[L:T List].  (hd(rev(L)) last(L))


Proof




Definitions occuring in Statement :  last: last(L) hd: hd(l) reverse: rev(as) list: List uall: [x:A]. B[x] universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a top: Top
Lemmas referenced :  list_wf reverse-reverse subtype_rel_list top_wf last-reverse reverse_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis sqequalAxiom lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule isect_memberEquality because_Cache universeEquality applyEquality independent_isectElimination lambdaEquality voidElimination voidEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].    (hd(rev(L))  \msim{}  last(L))



Date html generated: 2016_05_14-PM-03_11_33
Last ObjectModification: 2015_12_26-PM-01_47_44

Theory : list_1


Home Index