Nuprl Lemma : hd-reverse
∀[T:Type]. ∀[L:T List].  (hd(rev(L)) ~ last(L))
Proof
Definitions occuring in Statement : 
last: last(L)
, 
hd: hd(l)
, 
reverse: rev(as)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
top: Top
Lemmas referenced : 
list_wf, 
reverse-reverse, 
subtype_rel_list, 
top_wf, 
last-reverse, 
reverse_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
sqequalAxiom, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
isect_memberEquality, 
because_Cache, 
universeEquality, 
applyEquality, 
independent_isectElimination, 
lambdaEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].    (hd(rev(L))  \msim{}  last(L))
Date html generated:
2016_05_14-PM-03_11_33
Last ObjectModification:
2015_12_26-PM-01_47_44
Theory : list_1
Home
Index