Nuprl Lemma : nil_before
∀[T:Type]. ∀x,y:T. (x before y ∈ []
⇐⇒ False)
Proof
Definitions occuring in Statement :
l_before: x before y ∈ l
,
nil: []
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
false: False
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
implies: P
⇒ Q
,
false: False
,
l_before: x before y ∈ l
,
member: t ∈ T
,
prop: ℙ
,
rev_implies: P
⇐ Q
Lemmas referenced :
cons_sublist_nil,
cons_wf,
nil_wf,
l_before_wf,
false_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
lambdaFormation,
independent_pairFormation,
cut,
sqequalHypSubstitution,
lemma_by_obid,
isectElimination,
thin,
because_Cache,
dependent_functionElimination,
hypothesisEquality,
hypothesis,
productElimination,
independent_functionElimination,
voidElimination,
universeEquality
Latex:
\mforall{}[T:Type]. \mforall{}x,y:T. (x before y \mmember{} [] \mLeftarrow{}{}\mRightarrow{} False)
Date html generated:
2016_05_14-AM-07_45_16
Last ObjectModification:
2015_12_26-PM-02_53_13
Theory : list_1
Home
Index