Nuprl Lemma : EquatePairs_wf
∀[x,y,n,m:Base].
  (EquatePairs(x;n;y;m) ∈ Type) supposing ((¬(n = m ∈ Base)) and (¬(x = m ∈ Base)) and (¬(y = n ∈ Base)))
Proof
Definitions occuring in Statement : 
EquatePairs: EquatePairs(x;n;y;m), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
not: ¬A, 
member: t ∈ T, 
base: Base, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
EquatePairs: EquatePairs(x;n;y;m), 
so_lambda: λ2x y.t[x; y], 
prop: ℙ, 
or: P ∨ Q, 
and: P ∧ Q, 
so_apply: x[s1;s2], 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
all: ∀x:A. B[x], 
cand: A c∧ B, 
guard: {T}
Lemmas referenced : 
pertype_wf, 
equal-wf-base, 
base_wf, 
istype-void, 
istype-base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
Error :lambdaEquality_alt, 
unionEquality, 
hypothesis, 
hypothesisEquality, 
productEquality, 
because_Cache, 
Error :inhabitedIsType, 
independent_isectElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :functionIsType, 
Error :equalityIstype, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies, 
Error :lambdaFormation_alt, 
unionElimination, 
Error :inlFormation_alt, 
Error :unionIsType, 
Error :productIsType, 
productElimination, 
Error :inrFormation_alt, 
independent_pairFormation, 
independent_functionElimination, 
voidElimination
Latex:
\mforall{}[x,y,n,m:Base].    (EquatePairs(x;n;y;m)  \mmember{}  Type)  supposing  ((\mneg{}(n  =  m))  and  (\mneg{}(x  =  m))  and  (\mneg{}(y  =  n)))
Date html generated:
2019_06_20-PM-02_44_14
Last ObjectModification:
2019_01_13-PM-03_28_12
Theory : num_thy_1
Home
Index