Nuprl Lemma : eqmod_fun

m,a,a',b,b':ℤ.  ((a ≡ a' mod m)  (b ≡ b' mod m)  (a ≡ mod ⇐⇒ a' ≡ b' mod m))


Proof




Definitions occuring in Statement :  eqmod: a ≡ mod m all: x:A. B[x] iff: ⇐⇒ Q implies:  Q int:
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T uall: [x:A]. B[x] prop: rev_implies:  Q
Lemmas referenced :  eqmod_wf istype-int eqmod_inversion eqmod_transitivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  independent_pairFormation Error :universeIsType,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis Error :inhabitedIsType,  dependent_functionElimination independent_functionElimination because_Cache

Latex:
\mforall{}m,a,a',b,b':\mBbbZ{}.    ((a  \mequiv{}  a'  mod  m)  {}\mRightarrow{}  (b  \mequiv{}  b'  mod  m)  {}\mRightarrow{}  (a  \mequiv{}  b  mod  m  \mLeftarrow{}{}\mRightarrow{}  a'  \mequiv{}  b'  mod  m))



Date html generated: 2019_06_20-PM-02_24_21
Last ObjectModification: 2018_10_03-AM-00_13_14

Theory : num_thy_1


Home Index