Nuprl Lemma : fib-exists

n:ℕ(∃m:{ℕ(m fib(n) ∈ ℕ)})


Proof




Definitions occuring in Statement :  fib: fib(n) nat: all: x:A. B[x] sq_exists: x:{A| B[x]} equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] sq_exists: x:{A| B[x]} member: t ∈ T uall: [x:A]. B[x] prop:
Lemmas referenced :  fib_wf equal_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation dependent_set_memberFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis because_Cache

Latex:
\mforall{}n:\mBbbN{}.  (\mexists{}m:\{\mBbbN{}|  (m  =  fib(n))\})



Date html generated: 2016_05_14-PM-04_25_24
Last ObjectModification: 2015_12_26-PM-08_20_33

Theory : num_thy_1


Home Index