Nuprl Lemma : fib-exists
∀n:ℕ. (∃m:{ℕ| (m = fib(n) ∈ ℕ)})
Proof
Definitions occuring in Statement : 
fib: fib(n)
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:{A| B[x]}
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:{A| B[x]}
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
Lemmas referenced : 
fib_wf, 
equal_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
dependent_set_memberFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
because_Cache
Latex:
\mforall{}n:\mBbbN{}.  (\mexists{}m:\{\mBbbN{}|  (m  =  fib(n))\})
Date html generated:
2016_05_14-PM-04_25_24
Last ObjectModification:
2015_12_26-PM-08_20_33
Theory : num_thy_1
Home
Index