Nuprl Lemma : gcd_com

[n,m:ℕ].  (gcd(n;m) gcd(m;n))


Proof




Definitions occuring in Statement :  gcd: gcd(a;b) nat: uall: [x:A]. B[x] sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x]
Lemmas referenced :  gcd_sym_nat nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis sqequalAxiom sqequalRule isect_memberEquality isectElimination because_Cache

Latex:
\mforall{}[n,m:\mBbbN{}].    (gcd(n;m)  \msim{}  gcd(m;n))



Date html generated: 2016_05_14-PM-09_24_27
Last ObjectModification: 2015_12_26-PM-08_03_38

Theory : num_thy_1


Home Index