Nuprl Lemma : gcd_com
∀[n,m:ℕ].  (gcd(n;m) ~ gcd(m;n))
Proof
Definitions occuring in Statement : 
gcd: gcd(a;b)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
Lemmas referenced : 
gcd_sym_nat, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalAxiom, 
sqequalRule, 
isect_memberEquality, 
isectElimination, 
because_Cache
Latex:
\mforall{}[n,m:\mBbbN{}].    (gcd(n;m)  \msim{}  gcd(m;n))
Date html generated:
2016_05_14-PM-09_24_27
Last ObjectModification:
2015_12_26-PM-08_03_38
Theory : num_thy_1
Home
Index