Nuprl Lemma : gcd_sym_nat

a,b:ℕ.  (gcd(a;b) gcd(b;a))


Proof




Definitions occuring in Statement :  gcd: gcd(a;b) nat: all: x:A. B[x] sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nat: prop: iff: ⇐⇒ Q and: P ∧ Q implies:  Q sq_type: SQType(T) guard: {T}
Lemmas referenced :  subtype_base_sq int_subtype_base gcd_sym assoced_nelim gcd_wf gcd-non-neg le_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination cumulativity intEquality independent_isectElimination hypothesis dependent_functionElimination setElimination rename hypothesisEquality dependent_set_memberEquality natural_numberEquality because_Cache productElimination independent_functionElimination equalityTransitivity equalitySymmetry

Latex:
\mforall{}a,b:\mBbbN{}.    (gcd(a;b)  \msim{}  gcd(b;a))



Date html generated: 2016_05_14-PM-09_23_54
Last ObjectModification: 2015_12_26-PM-08_04_22

Theory : num_thy_1


Home Index