Nuprl Lemma : gcd_is_gcd
∀a,b,c:ℤ.  ((c | a) 
⇒ (c | b) 
⇒ (c | gcd(a;b)))
Proof
Definitions occuring in Statement : 
divides: b | a
, 
gcd: gcd(a;b)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
gcd_p: GCD(a;b;y)
, 
and: P ∧ Q
Lemmas referenced : 
divides_wf, 
istype-int, 
gcd_wf, 
gcd_sat_pred, 
gcd_p_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
Error :universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
Error :inhabitedIsType, 
dependent_functionElimination, 
equalitySymmetry, 
hyp_replacement, 
applyLambdaEquality, 
Error :equalityIsType1, 
equalityTransitivity, 
independent_functionElimination, 
productElimination, 
independent_pairFormation
Latex:
\mforall{}a,b,c:\mBbbZ{}.    ((c  |  a)  {}\mRightarrow{}  (c  |  b)  {}\mRightarrow{}  (c  |  gcd(a;b)))
Date html generated:
2019_06_20-PM-02_22_09
Last ObjectModification:
2018_10_03-AM-00_12_16
Theory : num_thy_1
Home
Index