Nuprl Lemma : gcd_is_gcd

a,b,c:ℤ.  ((c a)  (c b)  (c gcd(a;b)))


Proof




Definitions occuring in Statement :  divides: a gcd: gcd(a;b) all: x:A. B[x] implies:  Q int:
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] prop: gcd_p: GCD(a;b;y) and: P ∧ Q
Lemmas referenced :  divides_wf istype-int gcd_wf gcd_sat_pred gcd_p_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  Error :universeIsType,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis Error :inhabitedIsType,  dependent_functionElimination equalitySymmetry hyp_replacement applyLambdaEquality Error :equalityIsType1,  equalityTransitivity independent_functionElimination productElimination independent_pairFormation

Latex:
\mforall{}a,b,c:\mBbbZ{}.    ((c  |  a)  {}\mRightarrow{}  (c  |  b)  {}\mRightarrow{}  (c  |  gcd(a;b)))



Date html generated: 2019_06_20-PM-02_22_09
Last ObjectModification: 2018_10_03-AM-00_12_16

Theory : num_thy_1


Home Index