Nuprl Lemma : gcd_p_neg_arg_2

a,b,y:ℤ.  (GCD(a;b;y) ⇐⇒ GCD(a;-b;y))


Proof




Definitions occuring in Statement :  gcd_p: GCD(a;b;y) all: x:A. B[x] iff: ⇐⇒ Q minus: -n int:
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T uall: [x:A]. B[x] prop: rev_implies:  Q squash: T true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T}
Lemmas referenced :  gcd_p_wf istype-int gcd_p_neg_arg squash_wf true_wf minus_minus_cancel subtype_rel_self iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  independent_pairFormation Error :universeIsType,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis minusEquality Error :inhabitedIsType,  dependent_functionElimination independent_functionElimination applyEquality Error :lambdaEquality_alt,  imageElimination equalityTransitivity equalitySymmetry natural_numberEquality sqequalRule imageMemberEquality baseClosed instantiate universeEquality independent_isectElimination productElimination

Latex:
\mforall{}a,b,y:\mBbbZ{}.    (GCD(a;b;y)  \mLeftarrow{}{}\mRightarrow{}  GCD(a;-b;y))



Date html generated: 2019_06_20-PM-02_21_43
Last ObjectModification: 2018_10_03-AM-00_12_09

Theory : num_thy_1


Home Index