Nuprl Lemma : gcd_p_neg_arg_2
∀a,b,y:ℤ.  (GCD(a;b;y) 
⇐⇒ GCD(a;-b;y))
Proof
Definitions occuring in Statement : 
gcd_p: GCD(a;b;y)
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
minus: -n
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
Lemmas referenced : 
gcd_p_wf, 
istype-int, 
gcd_p_neg_arg, 
squash_wf, 
true_wf, 
minus_minus_cancel, 
subtype_rel_self, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
independent_pairFormation, 
Error :universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
minusEquality, 
Error :inhabitedIsType, 
dependent_functionElimination, 
independent_functionElimination, 
applyEquality, 
Error :lambdaEquality_alt, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
instantiate, 
universeEquality, 
independent_isectElimination, 
productElimination
Latex:
\mforall{}a,b,y:\mBbbZ{}.    (GCD(a;b;y)  \mLeftarrow{}{}\mRightarrow{}  GCD(a;-b;y))
Date html generated:
2019_06_20-PM-02_21_43
Last ObjectModification:
2018_10_03-AM-00_12_09
Theory : num_thy_1
Home
Index