Nuprl Lemma : gcd_properties
∀a,b:ℤ.  (((gcd(a;b) | a) ∧ (gcd(a;b) | b)) ∧ (∀c:ℤ. ((c | a) 
⇒ (c | b) 
⇒ (c | gcd(a;b)))))
This theorem is one of freek's list of 100 theorems
Proof
Definitions occuring in Statement : 
divides: b | a
, 
gcd: gcd(a;b)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
cand: A c∧ B
Lemmas referenced : 
gcd_is_divisor_1, 
gcd_is_divisor_2, 
gcd_is_gcd
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
intEquality, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis
Latex:
\mforall{}a,b:\mBbbZ{}.    (((gcd(a;b)  |  a)  \mwedge{}  (gcd(a;b)  |  b))  \mwedge{}  (\mforall{}c:\mBbbZ{}.  ((c  |  a)  {}\mRightarrow{}  (c  |  b)  {}\mRightarrow{}  (c  |  gcd(a;b)))))
Date html generated:
2016_05_14-PM-04_18_48
Last ObjectModification:
2015_12_26-PM-08_15_58
Theory : num_thy_1
Home
Index