Nuprl Lemma : gcd_properties

a,b:ℤ.  (((gcd(a;b) a) ∧ (gcd(a;b) b)) ∧ (∀c:ℤ((c a)  (c b)  (c gcd(a;b)))))


This theorem is one of freek's list of 100 theorems



Proof




Definitions occuring in Statement :  divides: a gcd: gcd(a;b) all: x:A. B[x] implies:  Q and: P ∧ Q int:
Definitions unfolded in proof :  all: x:A. B[x] and: P ∧ Q member: t ∈ T cand: c∧ B
Lemmas referenced :  gcd_is_divisor_1 gcd_is_divisor_2 gcd_is_gcd
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation intEquality cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis

Latex:
\mforall{}a,b:\mBbbZ{}.    (((gcd(a;b)  |  a)  \mwedge{}  (gcd(a;b)  |  b))  \mwedge{}  (\mforall{}c:\mBbbZ{}.  ((c  |  a)  {}\mRightarrow{}  (c  |  b)  {}\mRightarrow{}  (c  |  gcd(a;b)))))



Date html generated: 2016_05_14-PM-04_18_48
Last ObjectModification: 2015_12_26-PM-08_15_58

Theory : num_thy_1


Home Index