Nuprl Lemma : int_mod_2_isect_int_mod_3

_2 ⋂ ℤ_3 ≡ ℤ_6


Proof




Definitions occuring in Statement :  int_mod: _n isect2: T1 ⋂ T2 ext-eq: A ≡ B natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True and: P ∧ Q prop: lcm: lcm(a;b) ifthenelse: if then else fi  eq_int: (i =z j) bfalse: ff gcd: gcd(a;b) btrue: tt
Lemmas referenced :  less_than_wf int_mod_isect_int_mod
Rules used in proof :  cut lemma_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin dependent_set_memberEquality natural_numberEquality sqequalRule independent_pairFormation introduction imageMemberEquality hypothesisEquality baseClosed hypothesis because_Cache

Latex:
\mBbbZ{}\_2  \mcap{}  \mBbbZ{}\_3  \mequiv{}  \mBbbZ{}\_6



Date html generated: 2016_05_14-PM-09_27_44
Last ObjectModification: 2016_01_14-PM-11_31_17

Theory : num_thy_1


Home Index