Nuprl Lemma : int_mod_isect_int_mod

[n,m:ℕ+].  ℤ_n ⋂ ℤ_m ≡ ℤ_lcm(n;m)


Proof




Definitions occuring in Statement :  int_mod: _n lcm: lcm(a;b) isect2: T1 ⋂ T2 nat_plus: + ext-eq: A ≡ B uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T int_mod: _n so_lambda: λ2y.t[x; y] nat_plus: + so_apply: x[s1;s2] uimplies: supposing a all: x:A. B[x] prop: and: P ∧ Q implies:  Q ext-eq: A ≡ B subtype_rel: A ⊆B quotient: x,y:A//B[x; y] cand: c∧ B divides: a exists: x:A. B[x] eqmod: a ≡ mod m sq_type: SQType(T) guard: {T} decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top
Lemmas referenced :  int_formula_prop_wf int_term_value_var_lemma int_term_value_mul_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma itermVar_wf itermMultiply_wf intformeq_wf intformnot_wf satisfiable-full-omega-tt decidable__equal_int nat_plus_properties int_subtype_base subtype_base_sq equal_wf lcm-property subtract_wf lcm-is-lcm and_wf equal-wf-base quotient-member-eq nat_plus_wf lcm_wf equiv_rel_and quotient_wf isect2_wf ext-eq_transitivity eqmod_equiv_rel eqmod_wf isect2_quotient
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin intEquality sqequalRule lambdaEquality setElimination rename hypothesisEquality hypothesis independent_isectElimination dependent_functionElimination because_Cache productEquality independent_functionElimination productElimination independent_pairEquality axiomEquality isect_memberEquality independent_pairFormation pointwiseFunctionalityForEquality pertypeElimination equalityTransitivity equalitySymmetry dependent_pairFormation multiplyEquality promote_hyp instantiate cumulativity unionElimination natural_numberEquality int_eqEquality voidElimination voidEquality computeAll

Latex:
\mforall{}[n,m:\mBbbN{}\msupplus{}].    \mBbbZ{}\_n  \mcap{}  \mBbbZ{}\_m  \mequiv{}  \mBbbZ{}\_lcm(n;m)



Date html generated: 2016_05_14-PM-09_27_35
Last ObjectModification: 2016_01_14-PM-11_32_08

Theory : num_thy_1


Home Index