Nuprl Lemma : int_mod_isect_int_mod
∀[n,m:ℕ+].  ℤ_n ⋂ ℤ_m ≡ ℤ_lcm(n;m)
Proof
Definitions occuring in Statement : 
int_mod: ℤ_n
, 
lcm: lcm(a;b)
, 
isect2: T1 ⋂ T2
, 
nat_plus: ℕ+
, 
ext-eq: A ≡ B
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int_mod: ℤ_n
, 
so_lambda: λ2x y.t[x; y]
, 
nat_plus: ℕ+
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
ext-eq: A ≡ B
, 
subtype_rel: A ⊆r B
, 
quotient: x,y:A//B[x; y]
, 
cand: A c∧ B
, 
divides: b | a
, 
exists: ∃x:A. B[x]
, 
eqmod: a ≡ b mod m
, 
sq_type: SQType(T)
, 
guard: {T}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
top: Top
Lemmas referenced : 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_mul_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
itermVar_wf, 
itermMultiply_wf, 
intformeq_wf, 
intformnot_wf, 
satisfiable-full-omega-tt, 
decidable__equal_int, 
nat_plus_properties, 
int_subtype_base, 
subtype_base_sq, 
equal_wf, 
lcm-property, 
subtract_wf, 
lcm-is-lcm, 
and_wf, 
equal-wf-base, 
quotient-member-eq, 
nat_plus_wf, 
lcm_wf, 
equiv_rel_and, 
quotient_wf, 
isect2_wf, 
ext-eq_transitivity, 
eqmod_equiv_rel, 
eqmod_wf, 
isect2_quotient
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
sqequalRule, 
lambdaEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
dependent_functionElimination, 
because_Cache, 
productEquality, 
independent_functionElimination, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
isect_memberEquality, 
independent_pairFormation, 
pointwiseFunctionalityForEquality, 
pertypeElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation, 
multiplyEquality, 
promote_hyp, 
instantiate, 
cumulativity, 
unionElimination, 
natural_numberEquality, 
int_eqEquality, 
voidElimination, 
voidEquality, 
computeAll
Latex:
\mforall{}[n,m:\mBbbN{}\msupplus{}].    \mBbbZ{}\_n  \mcap{}  \mBbbZ{}\_m  \mequiv{}  \mBbbZ{}\_lcm(n;m)
Date html generated:
2016_05_14-PM-09_27_35
Last ObjectModification:
2016_01_14-PM-11_32_08
Theory : num_thy_1
Home
Index