Nuprl Lemma : lcm-is-lcm

n,m:ℕ+.  (((n lcm(n;m)) ∧ (m lcm(n;m))) ∧ (∀v:ℤ((n v)  (m v)  (lcm(n;m) v))))


Proof




Definitions occuring in Statement :  lcm: lcm(a;b) divides: a nat_plus: + all: x:A. B[x] implies:  Q and: P ∧ Q int:
Definitions unfolded in proof :  all: x:A. B[x] and: P ∧ Q cand: c∧ B member: t ∈ T nat_plus: + exists: x:A. B[x] implies:  Q prop: uall: [x:A]. B[x] divides: a iff: ⇐⇒ Q subtype_rel: A ⊆B uimplies: supposing a sq_type: SQType(T) guard: {T} decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top squash: T true: True rev_implies:  Q
Lemmas referenced :  lcm-property divides_wf nat_plus_wf equal_wf lcm_wf coprime_bezout_id divides_add equal-wf-base-T int_subtype_base subtype_base_sq nat_plus_properties decidable__equal_int satisfiable-full-omega-tt intformnot_wf intformeq_wf itermMultiply_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_mul_lemma int_term_value_var_lemma int_formula_prop_wf squash_wf true_wf add_functionality_wrt_eq mul_assoc iff_weakening_equal mul_com mul_add_distrib itermConstant_wf int_term_value_constant_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename hypothesisEquality hypothesis productElimination independent_pairFormation because_Cache isectElimination intEquality dependent_pairFormation equalitySymmetry multiplyEquality independent_functionElimination equalityTransitivity sqequalRule baseApply closedConclusion baseClosed applyEquality instantiate cumulativity independent_isectElimination unionElimination natural_numberEquality lambdaEquality int_eqEquality isect_memberEquality voidElimination voidEquality computeAll hyp_replacement imageElimination imageMemberEquality universeEquality

Latex:
\mforall{}n,m:\mBbbN{}\msupplus{}.    (((n  |  lcm(n;m))  \mwedge{}  (m  |  lcm(n;m)))  \mwedge{}  (\mforall{}v:\mBbbZ{}.  ((n  |  v)  {}\mRightarrow{}  (m  |  v)  {}\mRightarrow{}  (lcm(n;m)  |  v))))



Date html generated: 2017_04_17-AM-09_46_37
Last ObjectModification: 2017_02_27-PM-05_41_00

Theory : num_thy_1


Home Index