Nuprl Lemma : lcm-is-lcm
∀n,m:ℕ+.  (((n | lcm(n;m)) ∧ (m | lcm(n;m))) ∧ (∀v:ℤ. ((n | v) 
⇒ (m | v) 
⇒ (lcm(n;m) | v))))
Proof
Definitions occuring in Statement : 
lcm: lcm(a;b)
, 
divides: b | a
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
member: t ∈ T
, 
nat_plus: ℕ+
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
divides: b | a
, 
iff: P 
⇐⇒ Q
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
guard: {T}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
top: Top
, 
squash: ↓T
, 
true: True
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
lcm-property, 
divides_wf, 
nat_plus_wf, 
equal_wf, 
lcm_wf, 
coprime_bezout_id, 
divides_add, 
equal-wf-base-T, 
int_subtype_base, 
subtype_base_sq, 
nat_plus_properties, 
decidable__equal_int, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformeq_wf, 
itermMultiply_wf, 
itermVar_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
squash_wf, 
true_wf, 
add_functionality_wrt_eq, 
mul_assoc, 
iff_weakening_equal, 
mul_com, 
mul_add_distrib, 
itermConstant_wf, 
int_term_value_constant_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_pairFormation, 
because_Cache, 
isectElimination, 
intEquality, 
dependent_pairFormation, 
equalitySymmetry, 
multiplyEquality, 
independent_functionElimination, 
equalityTransitivity, 
sqequalRule, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
instantiate, 
cumulativity, 
independent_isectElimination, 
unionElimination, 
natural_numberEquality, 
lambdaEquality, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
hyp_replacement, 
imageElimination, 
imageMemberEquality, 
universeEquality
Latex:
\mforall{}n,m:\mBbbN{}\msupplus{}.    (((n  |  lcm(n;m))  \mwedge{}  (m  |  lcm(n;m)))  \mwedge{}  (\mforall{}v:\mBbbZ{}.  ((n  |  v)  {}\mRightarrow{}  (m  |  v)  {}\mRightarrow{}  (lcm(n;m)  |  v))))
Date html generated:
2017_04_17-AM-09_46_37
Last ObjectModification:
2017_02_27-PM-05_41_00
Theory : num_thy_1
Home
Index