Nuprl Lemma : isect2_quotient
∀[T:Type]. ∀[E1,E2:T ⟶ T ⟶ ℙ].
  (x,y:T//E1[x;y] ⋂ x,y:T//E2[x;y] ≡ x,y:T//(E1[x;y] ∧ E2[x;y])) supposing 
     (EquivRel(T;x,y.E1[x;y]) and 
     EquivRel(T;x,y.E2[x;y]))
Proof
Definitions occuring in Statement : 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
isect2: T1 ⋂ T2
, 
quotient: x,y:A//B[x; y]
, 
ext-eq: A ≡ B
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
ext-eq: A ≡ B
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
cand: A c∧ B
, 
guard: {T}
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
isect2: T1 ⋂ T2
, 
quotient: x,y:A//B[x; y]
Lemmas referenced : 
equiv_rel_wf, 
istype-universe, 
subtype_by_equality, 
isect2_wf, 
quotient_wf, 
equiv_rel_and, 
istype-base, 
isect2_decomp, 
isect2_subtype_rel2, 
equal_functionality_wrt_subtype_rel2, 
isect2_subtype_rel, 
base_wf, 
quotient-isect-base2, 
quotient-member-eq, 
subtype_rel_self, 
bool_wf, 
equal-wf-base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
independent_pairFormation, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
axiomEquality, 
hypothesis, 
Error :universeIsType, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
Error :lambdaEquality_alt, 
applyEquality, 
Error :inhabitedIsType, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies, 
Error :functionIsType, 
because_Cache, 
universeEquality, 
instantiate, 
independent_isectElimination, 
productEquality, 
independent_functionElimination, 
Error :lambdaFormation_alt, 
Error :equalityIstype, 
sqequalBase, 
equalitySymmetry, 
equalityTransitivity, 
functionExtensionality, 
cumulativity, 
equalityElimination, 
unionElimination, 
isect_memberEquality, 
pertypeElimination, 
promote_hyp, 
dependent_functionElimination, 
Error :productIsType, 
lambdaEquality, 
pointwiseFunctionalityForEquality, 
lemma_by_obid
Latex:
\mforall{}[T:Type].  \mforall{}[E1,E2:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (x,y:T//E1[x;y]  \mcap{}  x,y:T//E2[x;y]  \mequiv{}  x,y:T//(E1[x;y]  \mwedge{}  E2[x;y]))  supposing 
          (EquivRel(T;x,y.E1[x;y])  and 
          EquivRel(T;x,y.E2[x;y]))
Date html generated:
2019_06_20-PM-00_32_28
Last ObjectModification:
2018_11_25-PM-01_55_03
Theory : quot_1
Home
Index