Nuprl Lemma : quotient-isect-base2

[T:Type]. ∀[E:T ⟶ T ⟶ ℙ].  x,y:T//E[x;y] ⋂ Base ⊆T ⋂ Base supposing EquivRel(T;x,y.E[x;y])


Proof




Definitions occuring in Statement :  equiv_rel: EquivRel(T;x,y.E[x; y]) isect2: T1 ⋂ T2 quotient: x,y:A//B[x; y] uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] prop: so_apply: x[s1;s2] function: x:A ⟶ B[x] base: Base universe: Type
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a guard: {T} uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) subtype_rel: A ⊆B prop:
Lemmas referenced :  isect2_wf quotient_wf base_wf subtype_rel_self subtype_rel_functionality_wrt_iff quotient-isect-base ext-eq_weakening equiv_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality applyEquality independent_isectElimination hypothesis because_Cache isect_memberFormation introduction productElimination axiomEquality isect_memberEquality equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[E:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    x,y:T//E[x;y]  \mcap{}  Base  \msubseteq{}r  T  \mcap{}  Base  supposing  EquivRel(T;x,y.E[x;y])



Date html generated: 2016_05_14-AM-06_08_09
Last ObjectModification: 2015_12_26-AM-11_48_39

Theory : quot_1


Home Index