Nuprl Lemma : mul-assoced-one
∀x,y:ℤ.  (((x * y) ~ 1) 
⇒ (x ~ 1))
Proof
Definitions occuring in Statement : 
assoced: a ~ b
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
multiply: n * m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
assoced: a ~ b
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
divides: b | a
, 
exists: ∃x:A. B[x]
, 
guard: {T}
Lemmas referenced : 
one_divs_any, 
assoced_wf, 
equal_wf, 
divides_transitivity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
independent_pairFormation, 
hypothesis, 
lemma_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
isectElimination, 
multiplyEquality, 
natural_numberEquality, 
intEquality, 
dependent_pairFormation, 
independent_functionElimination
Latex:
\mforall{}x,y:\mBbbZ{}.    (((x  *  y)  \msim{}  1)  {}\mRightarrow{}  (x  \msim{}  1))
Date html generated:
2018_05_21-PM-01_05_57
Last ObjectModification:
2018_01_28-PM-02_02_05
Theory : num_thy_1
Home
Index