Step
*
2
2
2
1
1
of Lemma
odd-lsum-of-odd
1. T : Type
2. n : ℕ
3. u : T
4. u1 : T
5. u2 : T
6. v : T List
7. ∀L1:T List
(||L1|| < ||[u; u1; [u2 / v]]||
⇒ ∀[f:{x:T| (x ∈ L1)} ⟶ ℤ]. ↑isOdd(Σ(f[x] | x ∈ L1)) supposing (∀x∈L1.↑isOdd(f[x])) supposing ↑isOdd(||L1||))
8. ↑isOdd(((||v|| + 1) + 1) + 1)
⊢ ↑isOdd(||v|| + 1)
BY
{ (Subst' ((||v|| + 1) + 1) + 1 ~ (||v|| + 1) + 2 -1 THENA Auto) }
1
1. T : Type
2. n : ℕ
3. u : T
4. u1 : T
5. u2 : T
6. v : T List
7. ∀L1:T List
(||L1|| < ||[u; u1; [u2 / v]]||
⇒ ∀[f:{x:T| (x ∈ L1)} ⟶ ℤ]. ↑isOdd(Σ(f[x] | x ∈ L1)) supposing (∀x∈L1.↑isOdd(f[x])) supposing ↑isOdd(||L1||))
8. ↑isOdd((||v|| + 1) + 2)
⊢ ↑isOdd(||v|| + 1)
Latex:
Latex:
1. T : Type
2. n : \mBbbN{}
3. u : T
4. u1 : T
5. u2 : T
6. v : T List
7. \mforall{}L1:T List
(||L1|| < ||[u; u1; [u2 / v]]||
{}\mRightarrow{} \mforall{}[f:\{x:T| (x \mmember{} L1)\} {}\mrightarrow{} \mBbbZ{}]. \muparrow{}isOdd(\mSigma{}(f[x] | x \mmember{} L1)) supposing (\mforall{}x\mmember{}L1.\muparrow{}isOdd(f[x]))
supposing \muparrow{}isOdd(||L1||))
8. \muparrow{}isOdd(((||v|| + 1) + 1) + 1)
\mvdash{} \muparrow{}isOdd(||v|| + 1)
By
Latex:
(Subst' ((||v|| + 1) + 1) + 1 \msim{} (||v|| + 1) + 2 -1 THENA Auto)
Home
Index