Nuprl Lemma : odd-lsum-of-odd

[T:Type]. ∀[L:T List].
  ∀[f:{x:T| (x ∈ L)}  ⟶ ℤ]. ↑isOdd(Σ(f[x] x ∈ L)) supposing (∀x∈L.↑isOdd(f[x])) supposing ↑isOdd(||L||)


Proof




Definitions occuring in Statement :  isOdd: isOdd(n) lsum: Σ(f[x] x ∈ L) l_all: (∀x∈L.P[x]) l_member: (x ∈ l) length: ||as|| list: List assert: b uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] set: {x:A| B[x]}  function: x:A ⟶ B[x] int: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: guard: {T} int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T cons: [a b] uiff: uiff(P;Q) assert: b ifthenelse: if then else fi  isEven: isEven(n) eq_int: (i =z j) modulus: mod n remainder: rem m btrue: tt true: True l_all: (∀x∈L.P[x]) select: L[n] l_member: (x ∈ l) less_than': less_than'(a;b) cand: c∧ B iff: ⇐⇒ Q rev_implies:  Q subtract: m same-parity: same-parity(n;m) bfalse: ff rev_uimplies: rev_uimplies(P;Q) nat_plus: +
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than assert_witness int_seg_properties int_seg_wf subtract-1-ge-0 decidable__equal_int subtract_wf subtype_base_sq set_subtype_base int_subtype_base intformnot_wf intformeq_wf itermSubtract_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma decidable__le decidable__lt istype-le subtype_rel_self non_neg_length length_wf list-cases product_subtype_list isOdd_wf lsum_wf l_member_wf l_all_wf assert_wf istype-assert itermAdd_wf int_term_value_add_lemma istype-nat length_wf_nat list_wf istype-universe odd-iff-not-even nil_wf length_of_nil_lemma length_of_cons_lemma lsum_cons_lemma lsum_nil_lemma add-zero cons_wf select_wf subtype_rel_dep_function subtype_rel_sets_simple cons_member add-member-int_seg2 select_cons_tl_sq2 int_seg_subtype_nat istype-false isOdd-add isEven_wf bool_cases bool_wf bool_subtype_base eqtt_to_assert eqff_to_assert assert_of_bnot add_nat_plus add_nat_wf nat_plus_properties add-is-int-iff false_wf odd-plus-even odd-plus-odd
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut thin lambdaFormation_alt extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType productElimination isectIsTypeImplies inhabitedIsType functionIsTypeImplies unionElimination applyEquality instantiate because_Cache equalityTransitivity equalitySymmetry applyLambdaEquality dependent_set_memberEquality_alt productIsType promote_hyp hypothesis_subsumption imageElimination setIsType functionIsType addEquality universeEquality voidEquality imageMemberEquality baseClosed equalityIstype setEquality intEquality inrFormation_alt closedConclusion cumulativity pointwiseFunctionality baseApply

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].
    \mforall{}[f:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbZ{}].  \muparrow{}isOdd(\mSigma{}(f[x]  |  x  \mmember{}  L))  supposing  (\mforall{}x\mmember{}L.\muparrow{}isOdd(f[x])) 
    supposing  \muparrow{}isOdd(||L||)



Date html generated: 2020_05_19-PM-10_01_40
Last ObjectModification: 2019_11_13-AM-10_43_00

Theory : num_thy_1


Home Index